Archive Catalog Developer Tools

Below are some open source tools commonly used to search and visualize STAC APIs that we recommend considering when looking to search the Umbra Archive Catalog.

Pystac Client

Pystac-client is a library for Python that is used to search a STAC API. To install it:

pip install pystac-client

You can then use it to connect to Archive Catalog and perform a search. Don't forget to add your Auth Token .

import pystac_client

CANOPY_TOKEN="..."

stac_api_url = "https://api.canopy.umbra.space/archive"
catalog = pystac_client.Client.open(stac_api_url, headers={
    'Authorization': f"Bearer {CANOPY_TOKEN}"
})

time_range = "2020-01-01/2024-12-31"

# You can create a supported geometry using https://geojson.io/
intersect_geometry = None

stac_search = catalog.search(max_items=10, collections=["umbra-sar"], intersects=intersect_geometry, datetime=time_range)
items = stac_search.item_collection()

print(items[0].to_dict())
items

You can use https://geojson.io/ to create an intersect_geometry by copying over the geometry dictionary and assigning it to intersect_geometry.

If you are using Jupyter, thumbnails from the STAC items can be displayed in the Notebook.

from IPython.display import Image

def display_item_thumbnail(item):
    return Image(url=item.assets['thumbnail'].href)

display_item_thumbnail(items[0])

Leafmap

Leafmap is a Python package for searching and visualizing geospatial data with an interactive map in Jupyter. Start by installing it:

pip install leafmap

Then use it inside a Jupyter Notebook to display an interactive map:

import leafmap

search_map = leafmap.Map(zoom=4)
search_map

You can draw a box on the map to use as bounds for a STAC API search.

After drawing the box, send a search request.

if len(m.draw_features) == 1:
    intersects = m.draw_features[0]['geometry']
    bbox = None
    print("You have drawn a Feature on Leafmap. Using your selection to perform the search.")
else:
    intersects = None
    bbox = m.get_bbox()
    print("You have not drawn anything on the Leafmap. Using the entire bounds to perform the search.")

stac_api_url = "https://api.canopy.umbra.space/archive"
time_range = "2020-01-01/2024-12-31"

def inject_auth(request):
    request.headers["Authorization"] = f"Bearer {CANOPY_TOKEN}"
    return request

items = leafmap.stac_search(
    url=stac_api_url,
    max_items=10,
    collections=["umbra-sar"],
    datetime=time_range,
    bbox=bbox,
    intersects=intersects,
    get_collection=True,
    requests_callable=inject_auth
)
print(f"Returned {len(items)} results")

And examine the results.

# You have drawn a Feature on Leafmap. Using your selection to perform the search.
# Returned 2 results

print(items[0].to_dict())
items[0]

You can overlay the resulting images on Leafmap.

def layer_from_item(item):
    thumbnail_url = item.assets['thumbnail'].href
    bbox = item.bbox
    bounds = ((bbox[1], bbox[0]), (bbox[3], bbox[2]))
    return leafmap.ImageOverlay(
        url=thumbnail_url,
        bounds=bounds
    )

m = leafmap.Map()

for i, item in enumerate(items):
    layer = layer_from_item(item)
    layer.name = str(i)
    m.add_layer(layer)

center = leafmap.get_center(items[0].geometry)
m.set_center(lon=center[0], lat=center[1], zoom=12)
m